
18 CROSSTALK The Journal of Defense Software Engineering July 2002

SOAP (formerly known as Simple
Object Access Protocol) is a light-

weight protocol for exchanging struc-
tured and typed information in a decen-
tralized, distributed environment. It is an
XML-based protocol that consists of
three parts:
• An envelope that defines a framework

for describing what is in a message
and how to process it.

• A set of encoding rules for expressing
instances of application-defined data
types.

• A convention for representing remote
procedure calls and responses.
SOAP makes possible a universal plat-

form for Web-based applications that
transcend the boundaries of a specific
programming language and/or specific
platform. With SOAP users/adaptors
growing by the day, SOAP is rapidly
becoming the standard for building Web
services and connecting disparate sys-
tems in a loosely coupled fashion with
complete platform independence.

SOAP was developed by Microsoft,
DevelopMentor, and Userland Software
and proposed as an XML protocol to the
World Wide Web Consortium (W3C).
The name reflected the idea that SOAP
would be used to express serialized object
graphs, enabling object-oriented systems
to perform functions such as remote pro-
cedure calls while preserving objects and
their relations. However, in the W3C’s lat-
est working draft (version 1.2), SOAP
became the name and is no longer an
acronym. This reflects a shift in thinking
about SOAP from a serialization frame-
work for object-oriented systems to a
more general XML-based messaging par-
adigm, where the messages do not neces-
sarily contain objects.

SOAP is a key technology enabling
the development of Web services, which is
a term that has emerged to describe a
software module deployed on the Web
and intended for use as a component in
one or more applications distributed
across the Internet. The promise of Web
services is to facilitate the creation of

open distributed systems that leverage
networks by aggregating multiple services
and providing higher levels of functional-
ity.

Unlike the distributed computing pro-
tocols that preceded it, SOAP is simpler,
more flexible, and facilitates looser cou-
pling between the components. For
example, the Object Management
Group’s Internet Inter-Object Request
Broker Protocol (IIOP) is the underlying
transport mechanism used by the
Common Object Resource Broker

Architecture (CORBA). Microsoft’s
Distributed Component Object Model
(DCOM) is a distributed computing pro-
tocol that extends Component Object
Model (COM). Whereas IIOP is tightly
coupled to CORBA’s heavyweight archi-
tecture and infrastructure, and DCOM is
tied into Microsoft’s COM architecture,
SOAP is not tied to any corresponding
architecture or infrastructure.

SOAP is a stateless, one-way messag-
ing paradigm. Although more complex
interaction patterns can be built on top of
SOAP, the protocol is not tied to objects
or an infrastructure managing them.
SOAP is built on XML, which lends itself
to cross-platform interoperability. For the
transport layer, SOAP commonly uses
HTTP, another text-based communica-
tion protocol that has gained wide
acceptance, as is evident from the state of
the Web today.

However, the very attributes that
make SOAP so attractive also give cause

for some concern. The ports that serve as
integration points for business partners
can serve as entry points for unwanted
elements, such as hackers and viruses.
Depending on how your software is con-
figured, a remote operator could access
your system and provide instructions to
your server. This is a security issue.
SOAP’s openness and flexibility, the very
things that make it so powerful, can
enable attackers to wreak havoc on your
system.

How can you protect yourself ? The
rest of this article explores and addresses
the security issues that are relevant to
existing technologies. Some of these
challenges are applicable to a number of
existing protocols, but for the scope of
this article, we are focused specifically on
SOAP. After addressing these issues, a
discussion of the challenges beyond the
mainstream solutions will follow, as well
as ideas for meeting these challenges.

Security Issues and Priorities
Security is not a single problem, but
rather a host of interrelated issues. For
any given application, some of the issues
will be critical, while others may be of
lower priority or even irrelevant. Here are
some facets of security that are worth
considering when deploying SOAP serv-
ices:
• Privacy: For many services it is impor-

tant that messages are not visible to
anyone except the two parties
involved. This means traffic will need
to be encrypted so that machines in
the middle cannot read the messages.

• Message Integrity: This provides
assurance that the message received
has not been tampered with during
transit.

• Authentication: This provides assur-
ance that the message actually origi-
nated at the source from which it
claims to have originated. You may
need to not only authenticate a mes-
sage, but also prove the message ori-
gin to others. This is called non-repu-
diation. Non-repudiation is a legal

Security Issues with SOAP

Jim Clune and Dr. Adam Kolawa
ParaSoft Corporation

Formerly known as Simple Object Access Protocol, SOAP is rapidly becoming the standard for building Web services and
connecting disparate systems in a loosely coupled fashion with complete platform independence. However, some of the very fea-
tures that make SOAP attractive, such as its flexibility and its compatibility with HTTP, also provide opportunities for
security breaches. This article discusses SOAP security issues and how they can be addressed.

“Depending on how your
software is configured, a
remote operator could
access your system and
provide instructions to

your server.”

July 2002 www.stsc.hill.af.mil 19

Security Issues with SOAP

concern as well as a technical issue,
and achieving it is beyond the scope
of this article.

• Authorization: Clients should only be
allowed to access services they are
authorized to access. Note that
authorization requires authentication,
because without authentication, hos-
tile parties can masquerade as users
with the desired access.
The first step in implementing securi-

ty is to determine which aspects are
important for your organization. It is also
helpful to have some idea of their priori-
ties with respect to each other as well as
in terms of non-security related goals
such as quality and performance.

Implementing Security with
Current Technology
SOAP is a young technology, so the tools
and techniques for using it are still evolv-
ing. However, engineers under a deadline
need to understand what is available now.

In order to achieve security goals, we
will first look at HTTPS, which is HTTP
over the secure socket layer (SSL). The
SSL is widely used on the Internet today.
It performs public key encryption to
address the privacy aspect of security. It
also performs a message integrity check
using a keyed message authentication
code.

When it comes to authentication, the
story gets a little more complicated. SSL
uses certificate-based authentication, and
the certificates for the server and the
client may be controlled independently.
By far, the most common usage is for the
server to have a certificate and the client
not to have a certificate. In this scenario,
the client has assurance of the server’s
identity, but the server does not have
assurance of the client’s identity.
However, SSL may also be configured so
that both the server and the client require
trusted certificates.

Certificates for SSL are often, but not
required to be, in a chain with the root
certificate from a well-known trusted
authority such as Verisign, Thawte,
Entrust, etc. HTTPS can be used in con-
junction with other types of authentica-
tion such as HTTP Basic and Digest
authentication. By itself, Basic authentica-
tion is an extremely weak protection
scheme since it involves sending user-
name and password in base64 encoded
plain text. For some applications this is
sufficient. Digest is considerably better
because it involves a challenge/response
mechanism where the password is not
sent directly. Combining either of these

with HTTPS makes for a significantly
more secure connection since encryption
provided by the SSL prevents hackers
from spying the passwords and reusing
them.

Once you have established a means of
authentication, you need to establish
authorization procedures. It is helpful to
think of authorization in two broad cate-
gories: declarative and programmatic.
Declarative authorization typically
involves specifying which groups various
users belong to and which groups can
access each service. Here the member-
ship of each group determines the com-
plete specification, so coding is either
trivial or nonexistent. Programmatic
authorization involves obtaining the user,
group, or role at runtime and using that
information to perform some logic about
what to do next. Programmatic authori-
zation is more flexible in that you have
more options about what criteria to use
to reject a request as well as what action
to take if a request comes from a non-

trusted party. The trade-off is that pro-
grammatic authorization is more com-
plex, involves writing code, and provides
more opportunities for error.

Example: A Financial
Institution
Although SOAP-based Web services can
be deployed in a wide variety of lan-
guages and platforms, the principles used
are best illustrated by a concrete example.
In our discussion, we will be developing
our services in Java, utilizing the Apache
SOAP implementation, and deploying
them over HTTP using the Apache
Tomcat servlet container. Each of these
tools is freely available for commercial
use.

We will use the example of a financial
institution using SOAP-Remote Pro-
cedure Call (RPC) for business-to-busi-
ness integration. Before we jump into the
security issues, we will briefly review the
relevant pieces for implementing this sce-

nario. A simple method that a financial
institution may want to expose is:
getAccountBalance(account Number),
which takes an account number as an
input and returns the current account
balance. The Java method signature may
look like this:

public int getAccountBalance
(int accountNumber) throws
InvalidAccountException {
// Perform database query and
return result.
...
}

This describes the interface for a Java
application, but for SOAP we need to
translate this into appropriate SOAP
terms. The current approach is to create
a Web Service Description Language
(WSDL) document. WSDL is another
XML-based language that has been pro-
posed to the W3C. It is used for describ-
ing services as a set of endpoints operat-
ing on messages. This WSDL then
becomes the published interface for busi-
ness partners utilizing the service.
Deploying the implementation requires
configuring our components (in our case,
Tomcat, Apache SOAP, and our imple-
mentation Java class working together).

Deploying the service over HTTPS
requires only minor modifications to the
HTTP. First, you will need a certificate
for the server. This certificate is the iden-
tifier that enables clients to authenticate
the server. Java manages private keys and
their associated certificates in keystores.
Conceptually, keystores are databases of
key entries and trusted certificate entries,
though they are often implemented in
files rather than relational databases. Java
also provides a tool for managing key-
stores called keytool. Keytool generates
self-signed certificates as well as certifi-
cate signing requests, which are sent to a
certificate authority.

Next, both the interface and the
implementation must be modified to
reflect the change in protocol. For the
interface, change the WSDL to specify
the HTTPS protocol in the RPC router,
which indicates where to route the
remote procedure call. For the implemen-
tation, enable an HTTPS connector in
the Tomcat server configuration file.

The client will also need to make
some minor changes. The URL changes
to reflect the use of HTTPS instead of
HTTP. (This will happen automatically if
the client is WSDL-aware.) For accepting
certificates, Java again uses a keystore.
The keystore should contain the trusted

“Breaches in security are
often the result of false
assumptions.The most
dangerous are the ones

that are implicit and
unspoken.”

20 CROSSTALK The Journal of Defense Software Engineering July 2002

Information Assurance

certificate entry corresponding to the cer-
tificate associated with the server. This
assures the client that the response really
comes from our financial institution and
not a malicious party intercepting the
request. The keystore can be configured
statically using keytool or it can be
accessed and manipulated programmati-
cally at runtime in the client.

Beyond the Fundamentals:
Everything You Know Is
Wrong
Breaches in security are often the result
of false assumptions. The most danger-
ous assumptions are the ones that are
implicit and unspoken because these are
made subconsciously, so they are never
directly challenged and scrutinized. Here
we present some ideas to challenge the
reader’s assumptions. In some respects
these ideas are simply common sense.
However, in the words of the French
philosopher Voltaire, “Common sense is
not so common.”

There Is No Guaranteed Security
Public key cryptography systems are a
very good technology, but they are not a
panacea. What takes 50 years to break
using brute force on today’s most power-
ful supercomputer may take three sec-
onds after an unexpected breakthrough
in quantum computing. More pointedly, it
does not matter how long brute force
takes if the hacker does not use brute
force. The easiest way to circumvent pub-
lic key encryption is to gain physical
access to a computer containing the pri-
vate key. When someone tries to tell you
security is guaranteed, remember that
whenever humans are involved, guaran-
tees are an illusion, which only serves to
prevent you from thinking about what
can go wrong.

Security Through Obscurity Is Not
Always Bad
The term security through obscurity is used to
describe security measures that rely on
secrets in the protocol or algorithm. This
is in contrast to public key cryptography
systems, which have secret (private) keys,
but well-known algorithms. Despite the
inherent weaker nature of the security
through obscurity approach, if it is lay-
ered on top of strong encryption
schemes, it can provide an additional
deterrent for would-be attackers. In addi-
tion, this hybrid approach has an advan-
tage over a strict, strong cryptography
scheme since in a traditional scheme the
attacker knows that all he needs is the pri-
vate key. In an obfuscated scheme, how-

ever, he may not have any clue what
parameters are relevant.

How does this apply to SOAP mes-
sages? SOAP is a very expressive proto-
col. There are in fact an infinite number
of variations on how to say the same
thing. For example, white space in certain
contexts in XML documents is specifical-
ly defined as ignorable. Yet there is noth-
ing to prevent you from requiring specif-
ic, obscure rules for white space in your
SOAP messages. Attackers familiar with
SOAP would assume that the ignorable
white space is really ignorable, giving you
the opportunity to turn the tables and
capitalize on the hackers’ assumptions.
Another example would be to put con-
straints on the namespace prefixes used,
another area where multiple solutions are
possible. Outside the SOAP envelope,
the HTTP header could also house addi-
tional constraints. The obvious side effect
is that we have completely undermined
the interoperability of SOAP.

Interoperability Is Not Always Good
As mentioned in the beginning of this
article, a major benefit of SOAP com-
pared with other distributed computing
technologies is the evidence that the
promise of cross-platform and cross-lan-
guage interoperability is finally being real-
ized. However, security requirements like
authentication and authorization can be
reformulated as requirements to prevent
interoperability with malicious parties. If
you already know what implementation
your intended clients are using, then
being able to interoperate with other
clients may be an asset or a liability, or
both.

It Is All About Patterns
Another way to look at the security prob-
lem is to recognize that the whole process
of deploying Web services, as well as the
mechanisms of invoking SOAP RPCs
and processing SOAP messages, is about
manipulating structured data. Within this

data are many patterns, some of which
promote security, while others undermine
security. In this sense, many security
problems can be reformulated as a
requirement to identify insecure patterns
and prohibit them from infecting the sys-
tem. Patterns in XML are especially
important to SOAP because XML per-
meates the entire architecture. XML may
appear in the following:
• Server configuration files.
• Deployment descriptors.
• WSDL.
• In the SOAP envelope.

When a security hole is introduced in
any of these components, there is an
XML pattern that corresponds to that
security hole. For example, your server
configuration file could be set to not only
expose your service over HTTPS on port
443, but it could expose the same servlet
over HTTP on port 80. In some cases,
this is desirable, but only if you inten-
tionally make the service available
through both a secure and a nonsecure
connection. Finding these types of pat-
terns in XML is another technique to
ensure security.

It Is All About Layers
Providing security in multiple layers
increases robustness. If one security layer
is compromised, the next security layer
still provides protection. Layers can also
be used to provide flexibility by encrypt-
ing some parts of an XML document dif-
ferently than others. This allows users
access to only the portions of the docu-
ment related to them. Work in the area of
encrypting parts of XML documents is
under way in the XML Encryption work-
ing group of the W3C. A related area is
the idea of providing means for signing
XML data and verifying signatures, which
is covered by the XML Signature working
group of the W3C.

Conclusions
The potential exists for SOAP to allow
you to set up very dynamic Web services
highly customized to the specific needs
of each of your customers. However, this
new opportunity comes with the chal-
lenge of being able to consistently pro-
vide flexibility without compromising
your security. Meeting the challenges of
security needs requires knowing what the
security needs and priorities are, what
technologies can be used to achieve them,
and above all, thinking clearly about your
system’s weaknesses.◆

“Whenever humans
are involved, guarantees

are an illusion, which
only serves to prevent

you from thinking
about what can go

wrong.”

About the Authors

Jim Clune is develop-
ment manager for Para-
Soft Corporation as well
as technical lead for the
SOAPtest development
team. His professional

experience includes software engineering,
manufacturing engineering, and manage-
ment. He has a master’s of science degree
in applied computer science and technol-
ogy from Azusa Pacific University and a
bachelor’s of science degree in engineer-
ing from Harvey Mudd College.

ParaSoft Corporation
2031 South Myrtle Avenue
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-3036
E-mail: jim.clune@parasoft.com

Security Issues with SOAP

July 2002 www.stsc.hill.af.mil 21

Adam Kolawa, Ph.D., is
CEO and founding
member of ParaSoft
Corporation. Dr. Kolawa’s
experience with various
software development

processes allows him insight into the
high-tech industry providing him the abil-
ity to successfully identify technology
trends. Dr. Kolawa holds seven patents
for the technologies behind several inno-
vative commercial software tools. He is
co-author of “Bulletproofing Web
Applications” and was awarded the Los
Angeles Ernst & Young’s Entrepreneur
of the Year Award in the software cate-
gory. Dr. Kolawa has a doctorate degree
in theoretical physics from the California
Institute of Technology.

ParaSoft Corporation
2031 South Myrtle Avenue
Monrovia, CA 91016
Phone: (888) 305-0041
Fax: (626) 305-3036
E-mail: ukola@parasoft.com

WEB SITES

Defense Information Systems
Agency
www.disa.mil
The Defense Information Systems Agency
(DISA) is a combat support agency
responsible for planning, developing,
fielding, operating, and supporting com-
mand, control, communications, and
information systems that serve the needs
of the Department of Defense (DoD) and
other government offices. DISA is a
provider of integrated information solu-
tions to DOD and non-DOD customers.

National Communications
System
www.ncs.gov/n5_hp/n5_ia_hp/default.htm
The National Communications System
(NCS) Information Assurance Branch was
established to focus on the network and
information security initiatives of the NCS
under a common program branch. This
was done to increase NCS efficiency and
effectiveness, apply a coordinated direction,
and increase the general awareness of the
importance of network and information
security to the NCS government and
industry community. This site is a link to
the NCS home page listing programs, pub-
lications, member organizations, and more.

Software Testing Institute
www.softwaretestinginstitute.com
The Software Testing Institute (STI) pro-
vides access to quality industry publica-
tions, research, and online services. STI
offers the following professional resources:
a software testing discussion forum, the
STI Resource guide, the Automated
Testing Handbook, the STI Buyer’s
Guide, and privileged access to STI’s
exclusive industry surveys, including salary
and staffing practices, industry trends and
more.

World Wide Web
Consortium
www.w3.org
The World Wide Web Consortium
(W3C) develops interoperable technolo-
gies to lead the Web to its full potential as
a forum for information, commerce, com-
munication, and collective understanding.
On this page, you’ll find W3C news as
well as links to information about W3C
technologies, including Simple Object
Access Protocol (SOAP) 1.1, XML
Encryption WG, W3C architecture
domain, industry surveys on salaries,
staffing practices, industry trends, and
more.

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

APR2001 WEB-BASED APPS

JUL2001 TESTING & CM

AUG2001 SW AROUND THE WORLD

SEP2001 AVIONICS MODERNIZATION

DEC2001 SW LEGACY SYSTEMS

JAN2002 TOP 5 PROJECTS

MAR2002 SOFTWARE BY NUMBERS

APR2002 RISKY REQUIREMENTS

MAY2002 FORGING THE FUTURE OF DEF

JUN2002 SOFTWARE ESTIMATION

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

